Answer: 0.4302
Step-by-step explanation:
Given : Mean : [tex]\mu=\text{38.7 miles }[/tex]
Standard deviation : [tex]\sigma=\text{6.7 miles }[/tex]
Sample size : [tex]n=60[/tex]
Also, these distances are normally distributed.
Then , the formula to calculate the z-score is given by :-
[tex]z=\dfrac{x-\mu}{\sigma}[/tex]
For x=32.5
[tex]\\\\ z=\dfrac{32.5-38.7}{6.7}=-0.925373134\approx-0.93[/tex]
For x=40.5
[tex]\\\\ z=\dfrac{40.5-38.7}{6.7}=0.268656\approx0.27[/tex]
The p-value = [tex]P(-0.93<z<0.27)[/tex]
[tex]=P(0.27)-P(-0.93)=0.6064198- 0.1761855=0.4302343\approx0.4302[/tex]
Hence, the required probability :-0.4302