HELP ASAP!!!!!
Pre-calculus

[tex]xy=\log_{5\sqrt5}{125}\cdot\log_{2\sqrt2}64\\\\xy=\dfrac{\log_5125}{\log_5 5\sqrt5}\cdot\dfrac{\log_264}{\log_22\sqrt2}\\\\xy=\dfrac{3}{\log_55^{\tfrac{3}{2}}}\cdot\dfrac{6}{\log_22^{\tfrac{3}{2}}}\\\\xy=\dfrac{3}{\dfrac{3}{2}}\cdot\dfrac{6}{\dfrac{3}{2}}\\\\xy=3\cdot\dfrac{2}{3}\cdot6\cdot\dfrac{3}{2}\\\\xy=18[/tex]
Answer:
The product of x and y is 8.
Step-by-step explanation:
It is given that
[tex]x=\log_{5\sqrt{5}}\left(125\right)[/tex]
[tex]y=\log_{2\sqrt{2}}\left(64\right)[/tex]
We need to find the product of x and y.
[tex]x\cdot y=\log_{5\sqrt{5}}\left(125\right)\cdot\log_{2\sqrt{2}}\left(64\right)[/tex]
It can be written as
[tex]xy=\log_{5\sqrt{5}}\left(5\sqrt{5}\right)^2\cdot\log_{2\sqrt{2}}\left(2\sqrt{2}\right)^4[/tex]
Using the properties of logarithm, we get
[tex]xy=2\cdot 4[/tex] [tex][\because log_aa^x=x][/tex]
[tex]xy=8[/tex]
Therefore the product of x and y is 8.