Respuesta :

Answer:

Part 1) The polygon is a square

Part 2) The perimeter is equal to [tex]20\ units[/tex]

Part 3) The area is equal to [tex]25\ units^{2}[/tex]

Step-by-step explanation:

we have

[tex]A(5,0), B(2,4), C(-2,1),D(1,-3)[/tex]

Plot the points

see the attached figure

we know that

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

Find the distance AB

[tex]A(5,0),B(2,4)[/tex]

substitute in the formula

[tex]d=\sqrt{(4-0)^{2}+(2-5)^{2}}[/tex]

[tex]d=\sqrt{(4)^{2}+(-3)^{2}}[/tex]

[tex]d=\sqrt{25}[/tex]

[tex]AB=5\ units[/tex]

Find the distance BC

[tex]B(2,4), C(-2,1)[/tex]

substitute in the formula

[tex]d=\sqrt{(1-4)^{2}+(-2-2)^{2}}[/tex]

[tex]d=\sqrt{(-3)^{2}+(-4)^{2}}[/tex]

[tex]d=\sqrt{25}[/tex]

[tex]BC=5\ units[/tex]

Find the distance CD

[tex]C(-2,1),D(1,-3)[/tex]

substitute in the formula

[tex]d=\sqrt{(-3-1)^{2}+(1+2)^{2}}[/tex]

[tex]d=\sqrt{(-4)^{2}+(3)^{2}}[/tex]

[tex]d=\sqrt{25}[/tex]

[tex]CD=5\ units[/tex]

Find the distance AD

[tex]A(5,0),D(1,-3)[/tex]

substitute in the formula

[tex]d=\sqrt{(-3-0)^{2}+(1-5)^{2}}[/tex]

[tex]d=\sqrt{(-3)^{2}+(-4)^{2}}[/tex]

[tex]d=\sqrt{25}[/tex]        

[tex]AD=5\ units[/tex]

we have that

AB=BC=CD=AD

Find the distance BD (diagonal)

[tex]B(2,4),D(1,-3)[/tex]

substitute in the formula

[tex]d=\sqrt{(-3-4)^{2}+(1-2)^{2}}[/tex]

[tex]d=\sqrt{(-7)^{2}+(-1)^{2}}[/tex]

[tex]BD=\sqrt{50}\ units[/tex]        

Verify if the polygon is a square

If the triangle BDA is a right triangle, then the polygon is a square

Applying the Pythagoras theorem

[tex]BD^{2}=AD^{2}+AB^{2}[/tex]

substitute

[tex](\sqrt{50})^{2}=5^{2}+5^{2}[/tex]

[tex]50=50[/tex] -----> is true

so

The triangle BDA is a right triangle

therefore

The polygon is a square

Find the Area of the polygon

The area of a square is equal to

[tex]A=b^{2}[/tex]

we have

[tex]b=5\ units[/tex]

[tex]A=5^{2}=25\ units^{2}[/tex]

Find the perimeter of the polygon

The perimeter of a square is equal to

[tex]P=4b[/tex]

we have

[tex]b=5\ units[/tex]

[tex]P=4(5)=20\ units[/tex]

Ver imagen calculista