In 1995, the moose population in a park was measured to be 4200. By 1998, the population was measured again to be 1600. If the population continues to change linearly:

Find a formula for the moose population, P, in terms of t, the years since 1990.

P=

What does your model predict the moose population to be in 2003?

Respuesta :

Answer:

P = -2600/3 t + 25600/3

P = -8200/3

Step-by-step explanation:

t is the time in years since 1990, so two points on the line are (5, 4200) and (8, 1600).

Using the points to find the slope:

m = (y₂ − y₁) / (x₂ − x₁)

m = (1600 − 4200) / (8 − 5)

m = -2600/3

Now writing the equation in point-slope form:

P − 4200 = -2600/3 (t − 5)

Converting to slope-intercept form:

P − 4200 = -2600/3 t + 13000/3

P = -2600/3 t + 25600/3

In 2003, t = 13:

P = -2600/3 (13) + 25600/3

P = -8200/3