A rain gutter is to be made of aluminum sheets that are 12 inches wide by turning up the edges 90degrees. see the illustration. ​(a) what depth will provide maximum​ cross-sectional area and hence allow the most water to​ flow? ​(b) what depths will allow at least 16 square inches of water to​ flow?

Respuesta :

Answer:

  • a) max area for depth of 3 inches
  • b) ≥ 16 in² for 2 in ≤ depth ≤ 4 in

Step-by-step explanation:

(a) For a depth of x, the two sides of the rain gutter are length x, and the bottom is length (12-2x). The cross sectional area is the product of these dimensions:

  A = x(12 -2x)

This equation describes a parabola that opens downward. It has zeros at ...

  x = 0

  12 -2x = 0 . . . . x = 6

The maximum area is halfway between these zeros, at x=3.

The maximum area is obtained when the depth is 3 inches.

__

(b) For an area of at least 16 square inches, we want ...

  x(12 -2x) ≥ 16

  x(6 -x) ≥ 8 . . . . . divide by 2

  0 ≥ x² -6x +8 . . . . subtract the left side

  (x -4)(x -2) ≤ 0 . . . factor

The expression on the left will be negative for values of x between 2 and 4 (making only the x-4 factor be negative). Hence the the depths of interest are in that range.

At least 16 square inches of water will flow for depths between 2 and 4 inches, inclusive.

Ver imagen sqdancefan