Respuesta :

Answer:

I think the 2nd one

Step-by-step explanation:

[tex]\frac{x^{3}y^{2}\sqrt{30y}}{5}[/tex].

In order to solve this problem we have to reduce the expression[tex]\frac{\sqrt{6x^{8}y^{9}}}{\sqrt{5x^{2}y^{4}}}[/tex].

First, we have to combine the expression in a single radical:

[tex]\sqrt{\frac{6x^{8}y^{9} }{5x^{2}y^{4}}}[/tex]

Second, we have to reduce the expression above  by elimination of common factors:

[tex]\sqrt{\frac{x^{2}6x^{6}y^{4}y^{5} }{5x^{2}y^{4}}}\\\sqrt{\frac{6x^{6}y^{5} }{5}}[/tex]

rewriting the expression above:

[tex]\frac{\sqrt{6x^{6}y^{5}}}{\sqrt{5}}[/tex]

Simplifying:

[tex]\frac{\sqrt{(x^{3}y^{2})^{2}6y}}{\sqrt{5}}\\\frac{x^{3}y^{2}\sqrt{6y}}{\sqrt{5}}[/tex]

Multipliying the resultant expression by [tex]\frac{\sqrt{5}}{\sqrt{5}}[/tex]

[tex]\frac{x^{3}y^{2}\sqrt{6y}}{\sqrt{5}}\frac{\sqrt{5}}{\sqrt{5}}[/tex]

Resulting:

[tex]\frac{x^{3}y^{2}\sqrt{30y}}{5}[/tex]