Respuesta :

Answer:

[tex](\frac{-\sqrt{2}}{2},\frac{\sqrt{2}}{2})[/tex]

Step-by-step explanation:

Unit circle has a radius of 1.

So x=cos(3pi/4)=-sqrt(2)/2 and y=sin(3pi/4)=sqrt(2)/2

So the ordered pair is (-sqrt(2)/2  , sqrt(2)/2)

The terminal point for the unit circle that is determine by the [tex]$\frac{3 \pi}{4} $[/tex]   radians is

[tex]$\left( -\frac{1}{\sqrt 2}, \frac{1}{\sqrt 2} \right) . $[/tex]

We know the coordinates of the terminal point will be :

[tex]$x= \cos \left( \frac{3 \pi}{4} \right)$[/tex]    and   [tex]$y= \sin \left( \frac{3 \pi}{4} \right)$[/tex]

Therefore,

[tex]$x= \cos \left( \pi - \frac{ \pi}{4} \right)$[/tex]

[tex]$x= - \cos \frac{\pi}{4}$[/tex]

   [tex]$=-\frac{1}{\sqrt 2}$[/tex]

And

[tex]$y= \sin \left( \frac{3 \pi}{4} \right)$[/tex]

[tex]$y = \sin \left( \frac{\pi}{2} + \frac{\pi}{4} \right)$[/tex]

   [tex]$=\cos \frac{\pi}{4}$[/tex]

   [tex]$=\frac{1}{\sqrt 2}$[/tex]

Therefore the terminal points are : (x, y) = [tex]$\left( -\frac{1}{\sqrt 2}, \frac{1}{\sqrt 2} \right) . $[/tex]

Learn More :

https://brainly.com/question/16968198

Ver imagen AbsorbingMan