Respuesta :

The value of the expression [tex]\rm { log _3 5}\times{log_{25} 9}[/tex] is 1

What is the Law of Base change in Logarithm ?

According to the law of base change

[tex]\rm \log _b a = \dfrac{ log _d b}{log_d a}[/tex]

The given expression is

[tex]\rm { log _3 5}\times{log_{25} 9}[/tex]

This can be written as

[tex]\rm \rm { log _3 5}\times{log_{25} 9} = \dfrac{ log _{10} 5 *log _{10} 9 }{log_{10} 3*log _{10}25}[/tex]

[tex]\rm \rm { log _3 5}\times{log_{25} 9} = \dfrac{ log _{10} 5 *log _{10} 3^2 }{log_{10} 3*log _{10}5^2}[/tex]

[tex]\rm \rm { log _3 5}\times{log_{25} 9} = \dfrac{ log _{10} 5 *2log _{10} 3 }{log_{10} 3* 2 log _{10}5}[/tex]

On solving this the value of the expression [tex]\rm { log _3 5}\times{log_{25} 9}[/tex] is 1

To know more about Logarithm law

https://brainly.com/question/12420835

#SPJ2