Respuesta :

gmany

Answer:

[tex]\large\boxed{1.\ V=\dfrac{80\pi}{3}\ cm^3\approx83.73\ cm^3}\\\boxed{2.\ V=\dfrac{28\pi}{3}\ cm^3\approx29.31\ cm^3}\\\boxed{3.\ V=36\pi\ in^3\approx113.04\ cm^3}[/tex]

Step-by-step explanation:

The formula of a volume of a cone:

[tex]V=\dfrac{1}{3}\pi r^2H[/tex]

r - radius

H - height

[tex]\pi\approx3.14[/tex]

[tex]\bold{1.}\\\\r=4cm,\ H=5cm\\\\V=\dfrac{1}{3}\pi(4^2)(5)=\dfrac{1}{3}\pi(16)(5)=\dfrac{80\pi}{3}\ cm^3\approx\dfrac{(80)(3.14)}{3}=83.73\ cm^3[/tex]

[tex]\bold{2.}\\\\r=2cm,\ H=7cm\\\\V=\dfrac{1}{3}\pi(2^2)(7)=\dfrac{1}{3}\pi(4)(7)=\dfrac{28\pi}{3}\ cm^3\approx\dfrac{(28)(3.14)}{3}=29.31\ cm^3[/tex]

[tex]\bold{3.}\\\\r=6in,\ H=3in\\\\V=\dfrac{1}{3}\pi(6^2)(3)=\dfrac{1}{3}\pi(36)(3)=36\pi\ in^3\approx(36)(3.14)=113.04\ in^3[/tex]