contestada

Rodney is given two linear equations: x – y = 11 and 2x + y = 19. What value of x should he get as a solution for this system of linear equations

Respuesta :

Answer:

x = 10

Step-by-step explanation:

Given the 2 equations

x - y = 11 → (1)

2x + y = 19 → (2)

Adding the 2 equations term by term eliminates the term in y, that is

(x + 2x) + (- y + y) = (11 + 19), simplifying gives

3x = 30 ( divide both sides by 3 )

x = 10

Answer:

x = 10

Step-by-step explanation:

We know that Rodney is given the following two linear equations and we are to find the value of x at which he would get a solution for this system of linear equations:

[tex] x - y = 1 1 [/tex] - (1)

[tex] 2 x + y = 1 9 [/tex] - (2)

From (1):

[tex]x=11+y[/tex]

Substituting this value of x in (2):

[tex]2(11+y)+y=19[/tex]

[tex]22+2y+y=19[/tex]

[tex]3y=19-22[/tex]

[tex]y=-\frac{3}{3}[/tex]

[tex]y=-1[/tex]

Substituting this value of y in (1) to find x:

[tex]x=11+(-1)[/tex]

x = 10