Answer:
factored form is: [tex](\frac{x}{2}-\frac{y}{3})(\frac{x^2}{4}+\frac{xy}{6}+\frac{y^2}{9})[/tex]
Step-by-step explanation:
The given expression is:
[tex]\frac{1}{8}x^3 - \frac{1}{27}y^3[/tex]
The expression can be written as:
[tex](\frac{1}{2}x)^3-(\frac{1}{3}y)^3[/tex]
We know, a^3-b^3 = (a-b)(a^2+ab+b^2)
a= x/2 and b = y/3
Putting values in the formula given:
[tex](\frac{x}{2}-\frac{y}{3})((\frac{x}{2})^2+(\frac{x}{2})(\frac{y}{3})+(\frac{y}{3})^2)\\(\frac{x}{2}-\frac{y}{3})(\frac{x^2}{4}+\frac{xy}{6}+\frac{y^2}{9})[/tex]
So, factored form is: [tex](\frac{x}{2}-\frac{y}{3})(\frac{x^2}{4}+\frac{xy}{6}+\frac{y^2}{9})[/tex]