ANSWER
The correct option is B
EXPLANATION
The composite figure is made up of a semicircle and an isosceles triangle.
The area of a semicircle is
[tex] \frac{1}{2}\pi {r}^{2} [/tex]
From the diagram, the radius is
[tex]r = 4 \: in[/tex]
When we substitute, area of the semicircle is
[tex] \frac{1}{2} \times \pi \times {4}^{2} [/tex]
[tex]\frac{1}{2} \times \pi \times 16[/tex]
[tex]8\pi \: \: {in}^{2} [/tex]
The area of the isosceles triangle is
[tex] \frac{1}{2} \times base \times height[/tex]
[tex] = \frac{1}{2} \times (4 + 4) \times 3[/tex]
[tex] = \frac{1}{2} \times 8 \times 3[/tex]
[tex] = 12 \: {in}^{2} [/tex]
We add the two areas to obtain the area of the composite figure to be:
[tex](8\pi + 12) {in}^{2} [/tex]