Consider f(x) = -4x2 + 24x + 3. Determine whether the function has a maximum or minimum value. Then find the
value of the maximum or minimum

Respuesta :

Answer:

The function has a maximum in [tex]x=3[/tex]

The maximum is:

[tex]f(3) = 39[/tex]

Explanation:

Find the first derivative of the function for the inflection point, then equal to zero and solve for x

[tex]f(x)' = -4*2x + 24=0[/tex]

[tex]-4*2x + 24=0[/tex]

[tex]8x=24[/tex]

[tex]x=3[/tex]

Now find the second derivative of the function and evaluate at x = 3.

If [tex]f (3) ''< 0[/tex] the function has a maximum

If [tex]f (3) '' >0[/tex] the function has a minimum

[tex]f(x)''= 8[/tex]

Note that:

[tex]f(3)''= -8<0[/tex]

the function has a maximum in [tex]x=3[/tex]

The maximum is:

[tex]f(3)=-4(3)^2+24(3) + 3\\\\f(3) = 39[/tex]