Two spherical objects with a mass of 6.22 kg each are placed at a distance of 1.02 m apart. How many electrons need to leave each object so that the net force between them becomes zero?

Respuesta :

Answer:

The number of electrons need to leave each object is [tex]3.35\times10^{9}[/tex]

Explanation:

Given that,

Mass of object = 6.22 kg

Distance = 1.02 m

We need to calculate the number of electron

Using formula of electric force

[tex]F_{e}=\dfrac{k(q)^2}{r^2}[/tex]....(I)

We know that,

[tex]q = Ne[/tex]

Put the value of q in equation (I)

[tex]F_{e}=\dfrac{k(Ne)^2}{r^2}[/tex].....(II)

Using gravitational force

[tex]F_{G}=\dfrac{Gm^2}{r^2}[/tex].....(III)

Equating equation (II) and (III)

[tex]F_{e}=F_{G}[/tex]

[tex]\dfrac{k(Ne)^2}{r^2}=\dfrac{Gm^2}{r^2}[/tex]

[tex]N=\sqrt{\dfrac{G}{k}}\times\dfrac{m}{e}[/tex]....(IV)

Put the value in the equation(IV)

[tex]N=\sqrt{\dfrac{6.67\times10^{-11}}{9\times10^{9}}}\times\dfrac{6.22}{1.6\times10^{-19}}[/tex]

[tex]N=3.35\times10^{9}[/tex]

Hence, The number of electrons need to leave each object is [tex]3.35\times10^{9}[/tex]