Respuesta :
Answer:
[tex]\large\boxed{\sqrt{-36}+\sqrt{-100}+7=7+16i}[/tex]
Step-by-step explanation:
[tex]\sqrt{-1}=i\\\sqrt{ab}=\sqrt{a}\cdot\sqrt{b}\\=====================\\\\\sqrt{-36}=\sqrt{(36)(-1)}=\sqrt{36}\cdot\sqrT{-1}=6i\\\sqrt{-100}=\sqrt{(100)(-1)}=\sqrt{100}\cdot\sqrt{-1}=10i\\\\\sqrt{-36}+\sqrt{-100}+7=6i+10i+7=7+16i[/tex]
Answer:
The answer is [tex]16i+7[/tex]
Step-by-step explanation:
In order to determine the answer, we have to know about imaginary numbers.
The imaginary numbers are different to real numbers because they use a new unit called "imaginary unit":
[tex]i=\sqrt{-1}[/tex]
i: imaginary unit
This new unit is applied like a factor when we have even roots with negative numbers inside.
In this case:
[tex]\sqrt{-36}=\sqrt{-1}*\sqrt{36}=6i\\\sqrt{-100}=\sqrt{-1}*\sqrt{100}=10i\\ \\\sqrt{-36}+\sqrt{-100}+7\\ 6i+10i+7\\16i+7[/tex]
Finally, the answer is [tex]16i+7[/tex]