Respuesta :
Answer:
[tex]\large\boxed{x^\frac{4}{5}}[/tex]
Step-by-step explanation:
[tex]\sqrt[n]{a}=a^\frac{1}{n}\Rightarrow\sqrt[5]{x}=x^\frac{1}{5}\\\\\sqrt[5]{x}\cdot\sqrt[5]{x}\cdot\sqrt[5]{x}\cdot\sqrt[5]{x}=x^\frac{1}{5}\cdot x^\frac{1}{5}\cdot x^\frac{1}{5}\cdot x^\frac{1}{5}\qquad\text{use}\ a^n\cdot a^m=a^{n+m}\\\\=x^{\frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}}=x^\frac{4}{5}[/tex]
Answer:
[tex]x^{\frac{4}{5}}[/tex]
Step-by-step explanation:
fifth root of x can be written in exponential for as:
[tex]x^\frac{1}{5}[/tex]
[tex]x^\frac{1}{5}[/tex] times [tex]x^\frac{1}{5}[/tex] times [tex]x^\frac{1}{5}[/tex] times [tex]x^\frac{1}{5}[/tex]
WE apply exponential property to multiply it
a^m times a^n= a^{m+n}
[tex]x^\frac{1}{5}[/tex] times [tex]x^\frac{1}{5}[/tex] times [tex]x^\frac{1}{5}[/tex] times [tex]x^\frac{1}{5}[/tex]
[tex]x^{\frac{1}{5} +\frac{1}{5}+\frac{1}{5}+\frac{1}{5}}[/tex]
The denominator of the fractions are same so we add the numerators
[tex]x^{\frac{4}{5}}[/tex]