Answer:0.2 rad/s
Explanation:
Given data
Velocity of the bottom point of the ladder=1.2Ft/s
Length of ladder=10ft
distance of the bottom most point of ladder from origin=8ft
From the data the angle θ with ladder makes with horizontal surface is
Cosθ=[tex]\frac{8}{10}[/tex]
θ=36.86≈37°
We have to find rate of change of θ
From figure we can say that
[tex]x^{2}[/tex]+[tex]y^{2}[/tex]=[tex]AB^{2}[/tex]
Differentiating above equation we get
[tex]\frac{dx}{dt}[/tex]=-[tex]\frac{dy}{dt}[/tex]
i.e [tex]{V_A}=-{V_B}=1.2ft/s[/tex]
[tex]{at\theta}={37}[/tex]
[tex]Y=6ft[/tex]
[tex]and\ about\ Instantaneous\ centre\ of\ rotation[/tex]
[tex]{\omega r_A}={V_A}[/tex]
[tex]{\omega=\frac{1.2}{6}[/tex]
ω=0.2rad/s
i.e.Rate of change of angle=0.2 rad/s