Respuesta :
Answer:
C. X= -2.01 and x= 1.67
Step-by-step explanation:
[tex]3x {}^{2} + x + 10 = 0 \\ 3x {}^{2} + 6x - 5x + 10 = 0 \\ 3x(x + 2) - 5(x + 2) \\ (x + 2)(3x - 5 )\\ x + 2 = 0 \: \: or \: \: 3x - 5 = 0 \\ x = - 2 \: \: or \: \: x = \frac{5}{3} [/tex]
ANSWER
B. No real solutions
EXPLANATION
The given equation is
[tex]3 {x}^{2} + x + 10 = 0[/tex]
By comparing to
[tex]a {x}^{2} + bx + c= 0[/tex]
We have a=3,b=1 and c=10.
We substitute these values into the formula
[tex]D = {b}^{2} - 4ac[/tex]
to determine the nature of the roots.
[tex]D = {1}^{2} - 4(3)(10)[/tex]
[tex]D = 1 - 120[/tex]
[tex]D = - 119[/tex]
The discriminant is negative.
This means that the given quadratic equation has no real roots.