Respuesta :

Answer:

See below.

Step-by-step explanation:

[tex] f(x) = x^2 - 16 [/tex]

Replace f(x) with y.

[tex] y = x^2 - 16 [/tex]

Switch x and y.

[tex] x = y^2 - 16 [/tex]

Solve for y.

[tex] y^2 = x + 16 [/tex]

[tex] y = \pm\sqrt{x + 16} [/tex]

Replace y with f^(-1)(x).

[tex] f^{-1}(x) = \pm\sqrt{x + 16} [/tex]

The relation above is not a function, so the given function f(x) does not have an inverse unless the domain is restricted.

Answer:

F-1(x) =  √(x + 16).

Step-by-step explanation:

Let y = x^2 - 16

First make x the subject:

x^2  = y + 16

x = √(y + 16)

Now  replace x by the inverse  f-1(x) and replace y by x:

f-1(x) =  √(x + 16).

Note we only take the positive square root otherwise we would not have a function.