Answer: a) The probability is approximately = 0.5793
b) The probability is approximately=0.8810
Step-by-step explanation:
Given : Mean : [tex]\mu= 62.5\text{ in}[/tex]
Standard deviation : [tex]\sigma = \text{2.5 in}[/tex]
a) The formula for z -score :
[tex]z=\dfrac{x-\mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex]
Sample size = 1
For x= 63 in. ,
[tex]z=\dfrac{63-62.5}{\dfrac{2.5}{\sqrt{1}}}=0.2[/tex]
The p-value = [tex]P(z<0.2)=[/tex]
[tex]0.5792597\approx0.5793[/tex]
Thus, the probability is approximately = 0.5793
b) Sample size = 35
For x= 63 ,
[tex]z=\dfrac{63-62.5}{\dfrac{2.5}{\sqrt{35}}}\approx1.18[/tex]
The p-value = [tex]P(z<1.18)[/tex]
[tex]= 0.8809999\approx0.8810[/tex]
Thus , the probability is approximately=0.8810.