Respuesta :
Answer:
A(2,2)
Step-by-step explanation:
Let the vertex A has coordinates [tex](x_A,y_A)[/tex]
Vectors AB and AB' are perpendicular, then
[tex]\overrightarrow {AB}=(2-x_A,6-y_A)\\ \\\overrightarrow {AB'}=(-2-x_A,2-y_A)\\ \\\overrightarrow {AB}\perp\overrightarrow {AB'}\Rightarrow \overrightarrow {AB}\cdot \overrightarrow {AB'}=0\Rightarrow (2-x_A)(-2-x_A)+(6-y_A)(2-y_A)=0[/tex]
Vectors AC and AC' are perpendicular, then
[tex]\overrightarrow {AC}=(4-x_A,3-y_A)\\ \\\overrightarrow {AC'}=(1-x_A,4-y_A)\\ \\\overrightarrow {AC}\perp\overrightarrow {AC'}\Rightarrow \overrightarrow {AC}\cdot \overrightarrow {AC'}=0\Rightarrow (4-x_A)(1-x_A)+(3-y_A)(4-y_A)=0[/tex]
Now, solve the system of two equations:
[tex]\left\{\begin{array}{l}(2-x_A)(-2-x_A)+(6-y_A)(2-y_A)=0\\ \\(4-x_A)(1-x_A)+(3-y_A)(4-y_A)=0\end{array}\right.\\ \\\left\{\begin{array}{l}-4-2x_A+2x_A+x_A^2+12-6y_A-2y_A+y^2_A=0\\ \\4-4x_A-x_A+x_A^2+12-3y_A-4y_A+y_A^2=0\end{array}\right.\\ \\\left\{\begin{array}{l}x_A^2+y_A^2-8y_A+8=0\\ \\x_A^2+y_A^2-5x_A-7y_A+16=0\end{array}\right.[/tex]
Subtract these two equations:
[tex]5x_A-y_A-8=0\Rightarrow y_A=5x_A-8[/tex]
Substitute it into the first equation:
[tex]x_A^2+(5x_A-8)^2-8(5x_A-8)+8=0\\ \\x_A^2+25x_A^2-80x_A+64-40x_A+64+8=0\\ \\26x_A^2-120x_A+136=0\\ \\13x_A^2-60x_A+68=0\\ \\D=(-60)^2-4\cdot 13\cdot 68=3600-3536=64\\ \\x_{A_{1,2}}=\dfrac{60\pm8}{2\cdot 13}=\dfrac{34}{13},2[/tex]
Then
[tex]y_{A_{1,2}}=5\cdot \dfrac{34}{13}-8 \text{ or } 5\cdot 2-8\\ \\=\dfrac{66}{13}\text{ or } 2[/tex]
Rotation by 90° counterclockwise about A(2,2) gives image points B' and C' (see attached diagram)
