Answer:
The current in the resistor is 56.44 mA.
Explanation:
Given that,
Capacitor Q= 2.04 nF
Initial charge [tex]q= 4.55\ \mu C[/tex]
Resistor [tex] R= 1.28 k\omega[/tex]
Time [tex]t = 9.00\times10^{-6}[/tex]
We need to calculate the current
Using formula of current
[tex]I=\dfrac{Q}{RC}e^{\dfrac{-t}{RC}}[/tex]
Where, C = capacitor
R = resistor
t = time
Q = charge
Put the value into the formula
[tex]I=\dfrac{4.55\times10^{-6}}{1.28\times10^{3}\times2.04\times10^{-9}}e^{\dfrac{-9.00\times10^{-6}}{1.28\times10^{3}\times2.05\times10^{-9}}}[/tex]
[tex]I=0.05644\ A[/tex]
[tex]I=56.44\ mA[/tex]
Hence, The current in the resistor is 56.44 mA.