Respuesta :
Answer:
Step-by-step explanation:
1 = –2x + 3x^2 + 1
3x²-2x =0......add -1
so : a=3 and b=-2 and c=0
Answer :
The coefficient 'a' for the quadratic term is a = 3
The coefficient 'b' for the linear term is b = -2
The coefficient 'c' is 0
Step-by-step explanation :
The given expression is,
[tex]-2x+3x^2+1=1[/tex]
[tex]-2x+3x^2+1=1[/tex]
[tex]-2x+3x^2+1-1=0[/tex]
[tex]3x^2-2x=0[/tex]
To solve this problem we are using quadratic formula.
The general quadratic equation is,
[tex]ax^2+bx+c=0[/tex]
Formula used :
[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
Now we a have to solve the above equation and we get the value of 'x'.
[tex]3x^2-2x=0[/tex]
a = 3, b = -2, c = 0
[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
[tex]x=\frac{-(-2)\pm \sqrt{(-2)^2-4\times 3\times 0}}{2\times 3}[/tex]
[tex]x=\frac{-(-2)+\sqrt{(-2)^2-4\times 3\times 0}}{2\times 3}[/tex]
[tex]x=0.67[/tex]
[tex]x=\frac{-(-2)-\sqrt{(-2)^2-4\times 3\times 0}}{2\times 3}[/tex]
[tex]x=0[/tex]
The coefficient 'a' for the quadratic term is a = 3
The coefficient 'b' for the linear term is b = -2
The coefficient 'c' is 0