contestada

Which shows the correct substitution of the values a, b, and c from the equation 1 = –2x + 3x^2 + 1 into the quadratic formula? Quadratic formula:

Respuesta :

dhiab

Answer:

Step-by-step explanation:

1 = –2x + 3x^2 + 1

3x²-2x =0......add -1

so : a=3 and b=-2   and c=0

Answer :

The coefficient 'a' for the quadratic term is a = 3

The coefficient 'b' for the linear term is b = -2

The coefficient 'c' is 0

Step-by-step explanation :

The given expression is,

[tex]-2x+3x^2+1=1[/tex]

[tex]-2x+3x^2+1=1[/tex]

[tex]-2x+3x^2+1-1=0[/tex]

[tex]3x^2-2x=0[/tex]

To solve this problem we are using quadratic formula.

The general quadratic equation is,

[tex]ax^2+bx+c=0[/tex]

Formula used :

[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

Now we a have to solve the above equation and we get the value of 'x'.

[tex]3x^2-2x=0[/tex]

a = 3, b = -2, c = 0

[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

[tex]x=\frac{-(-2)\pm \sqrt{(-2)^2-4\times 3\times 0}}{2\times 3}[/tex]

[tex]x=\frac{-(-2)+\sqrt{(-2)^2-4\times 3\times 0}}{2\times 3}[/tex]

[tex]x=0.67[/tex]

[tex]x=\frac{-(-2)-\sqrt{(-2)^2-4\times 3\times 0}}{2\times 3}[/tex]

[tex]x=0[/tex]

The coefficient 'a' for the quadratic term is a = 3

The coefficient 'b' for the linear term is b = -2

The coefficient 'c' is 0