Respuesta :

Answer:

Third choice

Step-by-step explanation:

They are asking us to find the inverse of y=5x. To do this you just switch x and y and then remake y the subject of the equation (solve for y.)

y=5x

x=5y (I switch x and y)

x/5=y ( I divided both sides by 5)

Then you just replace y with the f^-1(x) thing

f^-1(x)=x/5

or

f^-1(x)=1/5x

C ([tex]f^{-1}(x) = \frac{1}{5}x[/tex]

Rearranging the formula of [tex]f(x)=5x[/tex]: [tex]f(x)=5x\to \frac{f(x)}{5}=x\to f^{-1}(x)=\frac{x}{5}=\frac{1}{5}x[/tex]

For all inverse functions, [tex]f^{-1}(f(x))=x[/tex]. This can verify the answer by [tex]f^{-1}(f(x))=\frac{1}{5}f(x)=\frac{1}{5}(5x)=x[/tex]