Respuesta :
Answer:
Third choice
Step-by-step explanation:
They are asking us to find the inverse of y=5x. To do this you just switch x and y and then remake y the subject of the equation (solve for y.)
y=5x
x=5y (I switch x and y)
x/5=y ( I divided both sides by 5)
Then you just replace y with the f^-1(x) thing
f^-1(x)=x/5
or
f^-1(x)=1/5x
C ([tex]f^{-1}(x) = \frac{1}{5}x[/tex]
Rearranging the formula of [tex]f(x)=5x[/tex]: [tex]f(x)=5x\to \frac{f(x)}{5}=x\to f^{-1}(x)=\frac{x}{5}=\frac{1}{5}x[/tex]
For all inverse functions, [tex]f^{-1}(f(x))=x[/tex]. This can verify the answer by [tex]f^{-1}(f(x))=\frac{1}{5}f(x)=\frac{1}{5}(5x)=x[/tex]