The displacement (in meters) of a particle moving in a straight line is given by the equation of motion s = 6/t2, where t is measured in seconds. Find the velocity of the particle at times t = a, t = 1, t = 2, and t = 3.

Respuesta :

Answer:

Velocity of the particle at time t = a

        [tex]v(a)=-\frac{12}{a^3}[/tex]

Velocity of the particle at time t = 1

         [tex]v(1)=-12m/s[/tex]

Velocity of the particle at time t = 2

         [tex]v(2)=-1.5m/s[/tex]

Velocity of the particle at time t = 3

          [tex]v(3)=-0.44m/s[/tex]

Explanation:

Displacement,

          [tex]s(t)=\frac{6}{t^2}[/tex]

Velocity is given by

          [tex]v(t)=\frac{ds}{dt}=\frac{d}{dt}\left ( \frac{6}{t^2}\right )=-\frac{12}{t^3}[/tex]

Velocity of the particle at time t = a

        [tex]v(a)=-\frac{12}{a^3}[/tex]

Velocity of the particle at time t = 1

         [tex]v(1)=-\frac{12}{1^3}=-12m/s[/tex]

Velocity of the particle at time t = 2

         [tex]v(2)=-\frac{12}{2^3}=-1.5m/s[/tex]

Velocity of the particle at time t = 3

          [tex]v(3)=-\frac{12}{3^3}=-0.44m/s[/tex]