Mario's velocity vector relative to the ice is
[tex]\vec v_{M/I}=-4.79\,\vec\jmath[/tex]
(note that all velocities mentioned here are given in m/s)
The puck is moving in a direction of 17.8 degrees west of south, or 252.2 degrees counterclockwise relative to east. Its velocity vector relative to the ice is then
[tex]\vec v_{P/I}=9.13(\cos252.2^\circ\,\vec\imath+\sin252.2^\circ\,\vec\jmath)=-2.79\,\vec\imath-8.69\,\vec\jmath[/tex]
The velocity of the puch relative to Mario is
[tex]\vec v_{P/M}=\vec v_{P/I}+\vec v_{I/M}=\vec v_{P/I}-\vec v_{M/I}[/tex]
[tex]\vec v_{P/M}=-2.79\,\vec\imath-3.90\,\vec\jmath[/tex]
Then, relative to Mario,
a. the puck is traveling at a speed of [tex]\boxed{\|\vec v_{P/M}\|=4.80}[/tex], and
b. is moving in a direction [tex]\theta[/tex] such that
[tex]\tan\theta=\dfrac{-3.90}{4.80}\implies\theta=-126^\circ[/tex]
which is about [tex]\boxed{35.6^\circ}[/tex] west of south.