Respuesta :

so, we know his average speed is 1¾ of a mile in 1 hour, so how long is it to cover 9⅝ miles then?

[tex]\bf \begin{array}{ccll} miles&hour\\ \cline{1-2} 1\frac{3}{4}&1\\\\ 9\frac{5}{8}&x \end{array}\implies \cfrac{~~1\frac{3}{4}~~}{9\frac{5}{8}}=\cfrac{1}{x}\implies \cfrac{~~\frac{1\cdot 4+3}{4}~~}{\frac{9\cdot 8+5}{8}}=\cfrac{1}{x}\implies \cfrac{~~\frac{7}{4}~~}{\frac{77}{8}}=\cfrac{1}{x}[/tex]

[tex]\bf \cfrac{~~\begin{matrix} 7 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}{~~\begin{matrix} 4 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}\cdot \cfrac{\stackrel{2}{~~\begin{matrix} 8 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}}{\underset{11}{~~\begin{matrix} 77 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}} =\cfrac{1}{x}\implies \cfrac{2}{11}=\cfrac{1}{x}\implies 2x=11\implies x=\cfrac{11}{2}\implies x=5\frac{1}{2}[/tex]

The required time is 5.5 hours.

Simple linear equation:

Linear equations are equations of the first order. The linear equations are defined for lines in the coordinate system. When the equation has a homogeneous variable of degree 1.

It is given that,

Speed=[tex]1\frac{3}{4}[/tex] mile per hour.

Distane:=[tex]9\frac{5}{8}[/tex] mile

[tex]Time=\frac{Distance}{Speed}[/tex]

Now, substituting the given values into the above formula we get,

[tex]T=\frac{\frac{77}{8} }{\frac{7}{4} }\\ =\frac{77\times4}{8\times 7} \\=\frac{11}{2}\\ T=5.5 hour[/tex]

Learn more about the time:https://brainly.com/question/19668173