Respuesta :

Answer:

Part 1) [tex]324\pi\ units^{2}[/tex] ------> [tex]7,776\pi\ units^{3}[/tex]

Part 2) [tex]36\pi\ units^{2}[/tex] ------> [tex]288\pi\ units^{3}[/tex]

Part 3) [tex]81\pi\ units^{2}[/tex] ------> [tex]972\pi\ units^{3}[/tex]

Part 4) [tex]144\pi\ units^{2}[/tex] ------> [tex]2,304\pi\ units^{3}[/tex]

Step-by-step explanation:

we know that

The largest cross sectional area of that sphere is equal to the area of a circle with the same radius of the sphere

Part 1) we have

[tex]A=324\pi\ units^{2}[/tex]

The area of the circle is equal to

[tex]A=\pi r^{2}[/tex]

so

[tex]324\pi=\pi r^{2}[/tex]

Solve for r

[tex]r^{2}=324[/tex]

[tex]r=18\ units[/tex]

Find the volume of the sphere

The volume of the sphere is

[tex]V=\frac{4}{3}\pi r^{3}[/tex]

For [tex]r=18\ units[/tex]

substitute

[tex]V=\frac{4}{3}\pi (18)^{3}[/tex]

[tex]V=7,776\pi\ units^{3}[/tex]

Part 2) we have

[tex]A=36\pi\ units^{2}[/tex]

The area of the circle is equal to

[tex]A=\pi r^{2}[/tex]

so

[tex]36\pi=\pi r^{2}[/tex]

Solve for r

[tex]r^{2}=36[/tex]

[tex]r=6\ units[/tex]

Find the volume of the sphere

The volume of the sphere is

[tex]V=\frac{4}{3}\pi r^{3}[/tex]

For [tex]r=6\ units[/tex]

substitute

[tex]V=\frac{4}{3}\pi (6)^{3}[/tex]

[tex]V=288\pi\ units^{3}[/tex]

Part 3) we have

[tex]A=81\pi\ units^{2}[/tex]

The area of the circle is equal to

[tex]A=\pi r^{2}[/tex]

so

[tex]81\pi=\pi r^{2}[/tex]

Solve for r

[tex]r^{2}=81[/tex]

[tex]r=9\ units[/tex]

Find the volume of the sphere

The volume of the sphere is

[tex]V=\frac{4}{3}\pi r^{3}[/tex]

For [tex]r=9\ units[/tex]

substitute

[tex]V=\frac{4}{3}\pi (9)^{3}[/tex]

[tex]V=972\pi\ units^{3}[/tex]

Part 4) we have

[tex]A=144\pi\ units^{2}[/tex]

The area of the circle is equal to

[tex]A=\pi r^{2}[/tex]

so

[tex]144\pi=\pi r^{2}[/tex]

Solve for r

[tex]r^{2}=144[/tex]

[tex]r=12\ units[/tex]

Find the volume of the sphere

The volume of the sphere is

[tex]V=\frac{4}{3}\pi r^{3}[/tex]

For [tex]r=12\ units[/tex]

substitute

[tex]V=\frac{4}{3}\pi (12)^{3}[/tex]

[tex]V=2,304\pi\ units^{3}[/tex]

Answer: The above answer is correct.

Step-by-step explanation: I got this right on Edmentum.

Ver imagen elpink25