Given: The coordinates of triangle PQR are P(0, 0), Q(2a, 0), and R(2b, 2c).
Prove: The line containing the midpoints of two sides of a triangle is parallel to the third side.

As part of the proof, find the midpoint of PR

Respuesta :

Answer:

The line containing the midpoints of two sides of a triangle is parallel to the third side ⇒ proved down

Step-by-step explanation:

* Lets revise the rules of the midpoint and the slope to prove the

  problem

- The slope of a line whose endpoints are (x1 , y1) and (x2 , y2) is

  [tex]m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]

- The mid-point of a line whose endpoints are (x1 , y1) and (x2 , y2) is

  [tex](\frac{x_{1}+x_{2}}{2},\frac{y_{1}+y_{2}}{2})[/tex]

* Lets solve the problem

- PQR is a triangle of vertices P (0 , 0) , Q (2a , 0) , R (2b , 2c)

- Lets find the mid-poits of PQ called A

∵ Point P is (x1 , y1) and point Q is (x2 , y2)

∴ x1 = 0 , x2 = 2a and y1 = 0 , y2 = 0

∵ A is the mid-point of PQ

∴ [tex]A=(\frac{0+2a}{2},\frac{0+0}{2})=(\frac{2a}{2},\frac{0}{2})=(a,0)[/tex]

- Lets find the mid-poits of PR which called B

∵ Point P is (x1 , y1) and point R is (x2 , y2)

∴ x1 = 0 , x2 = 2b and y1 = 0 , y2 = 2c

∵ B is the mid-point of PR

∴ [tex]B=(\frac{0+2b}{2},\frac{0+2c}{2})=(\frac{2b}{2},\frac{2c}{2})=(b,c)[/tex]

- The parallel line have equal slopes, so lets find the slopes of AB and

  QR to prove that they have same slopes then they are parallel

# Slope of AB

∵ Point A is (x1 , y1) and point B is (x2 , y2)

∵ Point A = (a , 0) and point B = (b , c)

∴ x1 = a , x2 = b and y1 = 0 and y2 = c

∴ The slope of AB is [tex]m=\frac{c-0}{b-a}=\frac{c}{b-a}[/tex]

# Slope of QR

∵ Point Q is (x1 , y1) and point R is (x2 , y2)

∵ Point Q = (2a , 0) and point R = (2b , 2c)

∴ x1 = 2a , x2 = 2b and y1 = 0 and y2 = 2c

∴ The slope of AB is [tex]m=\frac{2c-0}{2b-2a}=\frac{2c}{2(b-c)}=\frac{c}{b-a}[/tex]

∵ The slopes of AB and QR are equal

∴ AB // QR

∵ AB is the line containing the midpoints of PQ and PR of Δ PQR

∵ QR is the third side of the triangle

∴ The line containing the midpoints of two sides of a triangle is parallel

  to the third side

Answer:

b,c

Step-by-step explanation:

That guy above took so long