Respuesta :

Answer:

Choice A. 3.

Step-by-step explanation:

The triangle in question is a right triangle.

  • The length of the hypotenuse (the side opposite to the right angle) is given.
  • The measure of one of the acute angle is also given.

As a result, the length of both legs can be found directly using the sine function and the cosine function.

Let [tex]\text{Opposite}[/tex] denotes the length of the side opposite to the [tex]30^{\circ}[/tex] acute angle, and [tex]\text{Adjacent}[/tex] be the length of the side next to this [tex]30^{\circ}[/tex] acute angle.

[tex]\displaystyle \begin{aligned}\text{Opposite} &= \text{Hypotenuse} \times \sin{30^{\circ}}\\ &=2\sqrt{3}\times \frac{1}{2} \\&= \sqrt{3}\end{aligned}[/tex].

Similarly,

[tex]\displaystyle \begin{aligned}\text{Adjacent} &= \text{Hypotenuse} \times \cos{30^{\circ}}\\ &=2\sqrt{3}\times \frac{\sqrt{3}}{2} \\&= 3\end{aligned}[/tex].

The longer leg in this case is the one adjacent to the [tex]30^{\circ}[/tex] acute angle. The answer will be [tex]3[/tex].

There's a shortcut to the answer. Notice that [tex]\sin{30^{\circ}} < \cos{30^{\circ}}[/tex]. The cosine of an acute angle is directly related to the adjacent leg. In other words, the leg adjacent to the [tex]30^{\circ}[/tex] angle will be the longer leg. There will be no need to find the length of the opposite leg.

Does this relationship [tex]\sin{\theta} < \cos{\theta}[/tex] holds for all acute angles? (That is, [tex]0^{\circ} < \theta <90^{\circ}[/tex]?) It turns out that:

  • [tex]\sin{\theta} < \cos{\theta}[/tex] if [tex]0^{\circ} < \theta <45^{\circ}[/tex];
  • [tex]\sin{\theta} > \cos{\theta}[/tex] if [tex]45^{\circ} < \theta <90^{\circ}[/tex];
  • [tex]\sin{\theta} = \cos{\theta}[/tex] if [tex]\theta = 45^{\circ}[/tex].

Answer:

A

Step-by-step explanation:

Since the triangle is right use the cosine ratio

cos30° = [tex]\frac{adjacent }{hypotenuse}[/tex] = [tex]\frac{adj}{2\sqrt{3} }[/tex], so

[tex]\frac{\sqrt{3} }{2}[/tex] = [tex]\frac{adj}{2\sqrt{3} }[/tex]

Multiply both sides by 2[tex]\sqrt{3}[/tex]

adj = [tex]\frac{\sqrt{3} }{2}[/tex] × 2[tex]\sqrt{3}[/tex] = 3