Respuesta :

Answer:

[tex]-\frac{(2q-p)^{2}}{16} +\frac{2q-p}{4}=q[/tex]

Step-by-step explanation:

The given equations are:

[tex]-2y^{2}-2y=p[/tex]                                            Equation 1

[tex]-y^{2}+y=q[/tex]                                                Equation 2

Multiplying the Equation 2 with -2, we get:

[tex]-2(-y^{2}+y)=-2(q)\\[/tex]

[tex]2y^{2}-2y=-2q[/tex]                                          Equation 3

Adding Equation 1 and Equation 3, we get:

[tex]-2y^{2}-2y + (2y^{2}-2y)=p+(-2q)\\\\ -2y^{2}-2y + 2y^{2}-2y=p-2q\\\\ -4y=p-2q\\\\ y= \frac{p-2q}{-4}\\\\ y=\frac{2q-p}{4}[/tex]

Using this value of y, in either of the equations will give the relation independent of y.

Using the value of y in Equation 2, we get:

[tex]-(\frac{2q-p}{4})^{2}+(\frac{2q-p}{4} )=q\\\\ -\frac{(2q-p)^{2}}{16} +\frac{2q-p}{4}=q[/tex]