Determine whether the series is convergent or divergent. Hint: First use partial fraction decomposition. ∞ 8 (n−1)(n+1) n = 3 convergent divergent Correct: Your answer is correct. If it is convergent, find its sum. (If the quantity diverges, enter DIVERGES.)

Respuesta :

I guess the series is

[tex]\displaystyle\sum_{n=3}^\infty\frac8{(n-1)(n+1)}[/tex]

Splitting into partial fractions gives

[tex]\dfrac8{(n-1)(n+1)}=\dfrac4{n-1}-\dfrac4{n+1}[/tex]

The series telescopes, which we can see by considering the [tex]k[/tex]-th partial sum:

[tex]\displaystyle\sum_{n=3}^k\frac8{(n-1)(n+1)}=(2-1)+\left(\frac43-\frac45\right)+\cdots+\left(\frac4{k-2}-\frac4k\right)+\left(\frac4{k-1}-\frac4{k+1}\right)[/tex]

(feel free to write out more terms to convince yourself that the following is true)

[tex]\displaystyle\sum_{n=3}^k\frac8{(n-1)(n+1)}=2+\frac43-\frac4k-\frac4{k+1}[/tex]

Then as [tex]k\to\infty[/tex], we end up with

[tex]\displaystyle\lim_{k\to\infty}\sum_{n=3}^k\frac8{(n-1)(n+1)}=\boxed{\frac{10}3}[/tex]