The point

P(6, −2)

lies on the curve

y = 2/(5 − x).

(a) If Q is the point

(x, 2/(5 − x)),

use your calculator to find the slope

mPQ

of the secant line PQ (correct to six decimal places) for the following values of x.(i) 5.9

mPQ =



(ii) 5.99

mPQ =



(iii) 5.999

mPQ =



(iv) 5.9999

mPQ =



(v) 6.1

mPQ =



(vi) 6.01

mPQ =



(vii) 6.001

mPQ =



(viii) 6.0001

mPQ =


(b) Using the results of part (a), guess the value of the slope m of the tangent line to the curve at

P(6, −2).

m =



(c) Using the slope from part (b), find an equation of the tangent line to the curve at

P(6, −2).

Respuesta :

Answer:

Find the slope of the line that passes through the points shown in the table.

The slope of the line that passes through the points in the table is

.

Step-by-step explanation:

This answer can be solved by using formula for finding slope.

Calculate the required answers:

Given that point P(6,-2) lies on the curve y = 2/(5 − x) and Q is a point

(x, 2/(5 − x))

(a) Slope formula = [tex]\frac{y_{2}-y_{1} }{x_{2} -x_{1} }[/tex]

(1) x=5.9, y = 2/(5 − (5.9))= - 2.22222222

Q=(5.9,-2.22222222), P(6,-2)

[tex]m_{PQ}[/tex] = [tex]\frac{y_{2}-y_{1} }{x_{2} -x_{1} }[/tex] = [tex]\frac{(-2.22222222)-(-2) }{5.9 -6 }[/tex] = 0.2222/0.1 =2.22222222

(2) x=5.99, y = 2/(5 − (5.99))= - 2.02020202

Q=(5.99,-2.02020202), P(6,-2)

[tex]m_{PQ}[/tex] = [tex]\frac{y_{2}-y_{1} }{x_{2} -x_{1} }[/tex] = [tex]\frac{(-2.02020202)-(-2) }{5.99 -6 }[/tex] = 0.02020202/0.01 =2.020202

(3) x=5.999, y = 2/(5 − (5.999))= - 2.002002002

Q=(5.999,-2.2222...), P(6,-2)

[tex]m_{PQ}[/tex] = [tex]\frac{y_{2}-y_{1} }{x_{2} -x_{1} }[/tex] = [tex]\frac{(-2.002002002)-(-2) }{5.999 -6 }[/tex]=0.002002002/0.001 =2.002002

(4) x=5.9999, y = 2/(5 − (5.9999))= - 2.00020002

Q=(5.9999,-2.00020002), P(6,-2)

[tex]m_{PQ}[/tex] = [tex]\frac{y_{2}-y_{1} }{x_{2} -x_{1} }[/tex] = [tex]\frac{(-2.00020002)-(-2) }{5.9999 -6 }[/tex]=0.00020002/0.0001 =2.0002

(5) x=6.1, y = 2/(5 − (6.1))= - 1.818181818

Q=(6.1,-1.818181818), P(6,-2)

[tex]m_{PQ}[/tex] = [tex]\frac{y_{2}-y_{1} }{x_{2} -x_{1} }[/tex] = [tex]\frac{(-1.818181818)-(-2) }{6.1 -6 }[/tex]=0.1818181/0.1 =1.818181818

(6) x=6.01, y = 2/(5 − (6.01))= - 1.98019802

Q=(6.01,-1.98019802), P(6,-2)

[tex]m_{PQ}[/tex] = [tex]\frac{y_{2}-y_{1} }{x_{2} -x_{1} }[/tex] = [tex]\frac{(-1.98019802)-(-2) }{6.01 -6 }[/tex]=0.01980198/0.01 = 1.98019802

(7) x=6.001, y = 2/(5 − (6.001))= - 1.998001998

Q=(6.001,-1.998001998), P(6,-2)

[tex]m_{PQ}[/tex] = [tex]\frac{y_{2}-y_{1} }{x_{2} -x_{1} }[/tex] = [tex]\frac{(-1.998001998)-(-2) }{6.001-6 }[/tex]=0.001998001998/0.001 = 1.998001998

(8) x=6.0001, y = 2/(5 − (6.0001))= - 1.99980002

Q=(6.0001,-1.99980002), P(6,-2)

[tex]m_{PQ}[/tex] = [tex]\frac{y_{2}-y_{1} }{x_{2} -x_{1} }[/tex] = [tex]\frac{(-1.99980002)-(-2) }{6.0001 -6 }[/tex]=0.000199980002/0.0001 = 1.99980002

(b) From the results of part (a), we can say that m is negative of y₂

So, the slope m of the tangent line to the curve at P(6, −2) will be negative of (-2) that is 2.

(c) Equation of the tangent line to the curve at (x₁,y₁), y-y₁=m(x-x₁)

Equation of the tangent line to the curve at P(6, −2) is

                                          y-(-2) = 2(x-6)

                                           y+2 = 2x -12

                                               y = 2x - 14

Learn more about slope here:

brainly.com/question/12904030

#SPJ2