Write the slope-intercept form of the equation that passes through the point (-3, 5) and is perpendicular to the line y = 1/5x + 10 y = 5x + 10 y = -1/5x + 22/5 y = 1/5x + 28/5 y = -5x - 10

Respuesta :

gmany

Answer:

y = -5x - 10

Step-by-step explanation:

[tex]\text{Let}\\\\k:y=m_1x+b_1\\\\l:y=m_2x+b_2\\\\l\ \perp\ k\iff m_1m_2=-1\to m_2=-\dfrac{1}{m_1}\\\\l\ \parallel\ k\iff m_1=m_2\\\\=========================[/tex]

[tex]\text{We have}\ y=\dfrac{1}{5}x+10\to m_1=\dfrac{1}{5}\\\\\text{Therefore}\ m_2=-\dfrac{1}{\frac{1}{5}}=-5.\\\\\text{Put the value of a slope and the coordinates of the point (-3, 5)}\\\text{to the equation}\ y=mx+b:\\\\5=-5(-3)+b\\5=15+b\qquad\text{subtract 15 from both sides}\\-10=b\to b=-10\\\\\text{Finally:}\\\\y=-5x-10[/tex]