Write the equation of the line in slope-intercept form that has the following points: (2, -1)(5, -3) y = -2x + 1/3 y = -2/3x + 1 y = -2x + 1 y = -2/3x + 1/3

Respuesta :

gmany

Answer:

[tex]\large\boxed{y=-\dfrac{2}{3}x+\dfrac{1}{3}}[/tex]

Step-by-step explanation:

The slope-intercept form of an equation of a line:

[tex]y=mx+b[/tex]

m - slope

The formula of a slope:

[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

===============================================

We have the points (2, -1) and (5, -3). Substitute:

[tex]m=\dfrac{-3-(-1)}{5-2}=\dfrac{-2}{3}=-\dfrac{2}{3}[/tex]

We have the equation:

[tex]y=-\dfrac{2}{3}x+b[/tex]

Put the coordinates of the point (2, -1):

[tex]-1=-\dfrac{2}{3}(2)+b[/tex]

[tex]-1=-\dfrac{4}{3}+b[/tex]     add 4/3 to both sides

[tex]\dfrac{1}{3}=b\to b=\dfrac{1}{3}[/tex]

Finally:

[tex]y=-\dfrac{2}{3}x+\dfrac{1}{3}[/tex]