Respuesta :
Answer: The correct answer is $16.1 per unit.
Explanation:
C(x) = 9000 + 6x + 0.05x²
C(100) = 9000 + 6 × 100 + 0.05(100)²
= 9000 + 600 + 500
= 10,100
C(102) = 9000 + 6 × 102 + 0.05(102)²
= 9000 + 612 + 520.5
= 10,132.2
Now, the average rate of change of C with respect to x when production level changed from x = 100 to x = 102 is :
⇒ [tex]{ \frac{C(102) - C(100)}{(102 - 100)} \\= \frac{10132.2 - 10100}{2} \\[/tex]
= [tex]\frac{32.2}{2}[/tex]
= $16.1 per unit
Answer: 16
Explanation: Average rate of change of C with respect to X is given as
= [tex]\frac{\Delta C}{\Delta X}[/tex]
= [tex]\frac{(C(102)-C(100))}{(X(102)-X(100))}[/tex]
= [tex]\frac{ 10132.2-10100}{102-100}[/tex]
= 32/2
= 16