Respuesta :

Answer:

Option C and E are correct.

Step-by-step explanation:

We need to solve the following equation

(2x+3)^2=10

taking square root on both sides

[tex]\sqrt{(2x+3)^2}=\sqrt{10}\\2x+3=\pm\sqrt{10}[/tex]

Now solving:

[tex]2x+3=\sqrt{10} \,\,and\,\,2x+3=-\sqrt{10}\\2x=\sqrt{10}-3 \,\,and\,\,2x=-\sqrt{10}-3\\x=\frac{ \sqrt{10}-3}{2} \,\,and\,\,x=\frac{-\sqrt{10}-3}{2}[/tex]

So, Option C and E are correct.

Answer: E .√10 - 3 / 2 or

c. -√10 - 3 / 2

Step-by-step explanation:

(2x + 3)^2 = 10

take the square root of bothside

√(2x + 3)^2 = ±√10

2x + 3 = ±√10

subtract 3 from bothside

2x = ±√10 - 3

Divide bothside by 2

x = ±√10 - 3 / 2

Either x = √10 - 3 / 2 or

x = -√10 - 3 / 2