Answer:
a) The object must have constant velocity.
d) The object must have zero acceleration.
Explanation:
We can solve the problem by using Newton's second law, which states that the net force acting on an object is equal to the product between mass and acceleration:
[tex]F = ma[/tex]
where
F is the net force
m is the mass of the object
a is the acceleration
In this problem, the net force on the object is zero:
F = 0
This means that the acceleration of the object is also zero, according to the previous equation:
a = 0
So statement (d) is correct. Moreover, acceleration is defined as the rate of change of velocity:
[tex]a=\frac{\Delta v}{\Delta t}[/tex]
Which means that [tex]\Delta v=0[/tex], so the velocity is constant. Therefore, statement (a) is also correct. The other two statements are false because:
b)The object must be at rest. --> false, the object can be moving at constant velocity, different from zero
c)The object must be at the origin. --> false, since the object can be in motion