the speed thing above the chart, Ya pretend that is not there

For this case we have:
a)
[tex]\frac {1} {10}[/tex]to convert as a percentage we have:
[tex]\frac {1} {10}[/tex] * 100% = 10%
b)
[tex]\frac {1} {4}[/tex], if we multiply the numerator and denominator by 25 we have:
[tex]\frac {25} {100}[/tex]
c)
Now we must write a fraction that represents 50%.
We have[tex]\frac {1} {2}[/tex]. If we multiply the numerator and denominator by 50 we have:
[tex]\frac {50} {100}[/tex]
Answer:
10%
[tex]\frac {25} {100}\\\frac {1} {2}[/tex]
Answer:
[tex]a=10\%\\\\b=\frac{25}{100}\\\\c=\frac{1}{2}[/tex]
Step-by-step explanation:
To find "a" you can multiply [tex]\frac{10}{100}[/tex] by 100, then this is:
[tex]a=\frac{10}{100}*100\\\\a=10\%[/tex]
To find "b", you can multiply the numerator and the denominator of the fraction [tex]\frac{1}{4}[/tex] by 25, getting:
[tex]b=\frac{1*25}{4*25}\\\\b=\frac{25}{100}[/tex]
To find "c", you can reduce the fraction [tex]\frac{50}{100}[/tex]. Then you get that this is:
[tex]c=\frac{50}{100}\\\\c=\frac{25}{50}\\\\c=\frac{5}{10}\\\\c=\frac{1}{2}[/tex]