Respuesta :

Answer:

[tex]-2y^{b-1}[/tex]

Step-by-step explanation:

[tex]\frac{12x^ay^b}{-6x^ay}[/tex]

In multiplication of fractions you can do this:

[tex]\frac{a}{c} \cdot \frac{b}{d}=\frac{a \cdot b}{c \dot d} \text{ or the other way around } \frac{a \cdot b}{c \dot d}=\frac{a}{c} \cdot \frac{b}{d}[/tex].

So that is exactly what we are going to do here:

[tex]\frac{12x^ay^b}{-6x^ay}[/tex]

[tex]\frac{12}{-6} \cdot \frac{x^a}{x^a} \cdot \frac{y^b}{y}[/tex]

We know that 12 divided by -6=12/-6 =-2.

We also know assuming x isn't 0 that x^a/x^a=1.

On the last fraction, the only thing you can do there to simplify is use the following law of exponents: [tex]\frac{v^m}{v^n}=v^{m-n}[/tex].

So we have

[tex]\frac{12x^ay^b}{-6x^ay}[/tex]

[tex]\frac{12}{-6} \cdot \frac{x^a}{x^a} \cdot \frac{y^b}{y}[/tex]

[tex](-2) \cdot (1) \cdot (y^{b-1})[/tex]

Simplifying a bit and leaving out the ( ).

[tex]-2y^{b-1}[/tex]