Answer:
option (1) is correct.
point (c-2, y) lies on the graph of [tex]f(x)=x(x-4)[/tex].
Step-by-step explanation:
Given function [tex]f(x)=x(x-4)[/tex] also point (2+ c,y) is on the graph of f(x) ,
We have to find out of given point which point will also be on the graph of f(x).
Consider the given function [tex]f(x)=x(x-4)[/tex]
[tex]f(x)=x(x-4)[/tex] can be rewritten [tex]f(x)=x^2-4x[/tex]
Now we substitute the given point (2+ c, y) in the function given ,
we have,
[tex]f(x)=y=x(x-4)[/tex]
put for x as 2+c , we have,
[tex]\Rightarrow y=(2+c)(2+c-4)[/tex]
Solve, we get
[tex]\Rightarrow y=(2+c)(c-2)[/tex]
Thus, both point (2+c, y) and (c-2, y) lies on the graph of [tex]f(x)=x(x-4)[/tex]
Thus, option (1) is correct.