Respuesta :
Answer:
[tex]\large\boxed{B.\ x=\pm1\ and\ x=\pm2\sqrt2}[/tex]
Step-by-step explanation:
[tex]x^4-9x^2+8=0\\\\x^{2\cdot2}-9x^2+8=0\qquad\text{use}\ (a^n)^m=a^{nm}\\\\(x^2)^2-9x^2+8=0\\\\\text{substitute}\ x^2=t\geq0\\\\t^2-9t+8=0\\\\t^2-t-8t+8=0\\\\t(t-1)-8(t-1)=0\\\\(t-1)(t-8)+0\iff t-1=0\ \vee\ t-8=0\\\\t-1=0\qquad\text{add 1 to both sides}\\t=1\geq0\\\\t-8=0\qquad\text{add 8 to both sides}\\t=8\geq0[/tex]
[tex]t=x^2\to x^2=1\ \vee\ x^2=8\\\\x^2=1\Rightarrow x=\pm\sqrt1\to x=\pm1\\\\x^2=8\Rightarrow x=\pm\sqrt8\to x=\pm\sqrt{4\cdot2}\to x=\pm\sqrt4\cdot\sqrt2\to x=\pm2\sqrt2[/tex]
Answer:
Step-by-step explanation:
Given is the equation of 4th degree in x,
[tex]x^4 - 9x^2 + 8 = 0[/tex]
Substitute [tex]x^2=u[/tex]
[tex]u^2-9u+8=0\\(u-1)(u-8)=0[/tex]
u=1 and u =8
i.e. [tex]x^2=1\\x^2 =8[/tex]
Solving we get
[tex]x=1,-1,2\sqrt{2}, -2\sqrt{2}[/tex]
Option B is right.