contestada

In a 100 mm diameter horizontal pipe, a venturimeter of 0.5 contraction ratio has been fitted. The head of water on the meter when there is no flow is 3 m (gauge). Find the rate of flow for which the throat pressure will be 2m of water absolute. Discharge coefficient for the meter is 0.97.

Respuesta :

Answer:

the rate of flow = 29.28 ×10⁻³ m³/s or 0.029 m³/s

Explanation:

Given:

Diameter of the pipe = 100mm = 0.1m

Contraction ratio = 0.5

thus, diameter at the throat of venturimeter = 0.5×0.1m = 0.05m

The formula for discharge through a venturimeter is given as:

[tex]Q=C_d\frac{A_1A_2}{\sqrt{A_1^2-A_2^2}}\sqrt{2gh}[/tex]

Where,

[tex]C_d[/tex] is the coefficient of discharge = 0.97 (given)

A₁ = Area of the pipe

A₁ = [tex]\frac{\pi}{4}0.1^2 = 7.85\times 10^{-3}m^2[/tex]

A₂ = Area at the throat

A₂ = [tex]\frac{\pi}{4}0.05^2 = 1.96\times 10^{-3}m^2[/tex]

g = acceleration due to gravity = 9.8m/s²

Now,

The gauge pressure at throat = Absolute pressure - The atmospheric pressure

⇒The gauge pressure at throat = 2 - 10.3 = -8.3 m (Atmosphric pressure = 10.3 m of water)

Thus, the pressure difference at the throat and the pipe = 3- (-8.3) = 11.3m

Substituting the values in the discharge formula we get

[tex]Q=0.97\frac{7.85\times 10^{-3}\times 1.96\times 10^{-3}}{\sqrt{7.85\times 10^{-3}^2-1.96\times 10^{-3}^2}}\sqrt{2\times 9.8\times 11.3}[/tex]

or

[tex]Q=\frac{0.97\times15.42\times 10^{-6}\times 14.88}{7.605\times 10^{-3}}[/tex]

or

Q = 29.28 ×10⁻³ m³/s

Hence, the rate of flow = 29.28 ×10⁻³ m³/s or 0.029 m³/s