Respuesta :
Answer:
the rate of flow = 29.28 ×10⁻³ m³/s or 0.029 m³/s
Explanation:
Given:
Diameter of the pipe = 100mm = 0.1m
Contraction ratio = 0.5
thus, diameter at the throat of venturimeter = 0.5×0.1m = 0.05m
The formula for discharge through a venturimeter is given as:
[tex]Q=C_d\frac{A_1A_2}{\sqrt{A_1^2-A_2^2}}\sqrt{2gh}[/tex]
Where,
[tex]C_d[/tex] is the coefficient of discharge = 0.97 (given)
A₁ = Area of the pipe
A₁ = [tex]\frac{\pi}{4}0.1^2 = 7.85\times 10^{-3}m^2[/tex]
A₂ = Area at the throat
A₂ = [tex]\frac{\pi}{4}0.05^2 = 1.96\times 10^{-3}m^2[/tex]
g = acceleration due to gravity = 9.8m/s²
Now,
The gauge pressure at throat = Absolute pressure - The atmospheric pressure
⇒The gauge pressure at throat = 2 - 10.3 = -8.3 m (Atmosphric pressure = 10.3 m of water)
Thus, the pressure difference at the throat and the pipe = 3- (-8.3) = 11.3m
Substituting the values in the discharge formula we get
[tex]Q=0.97\frac{7.85\times 10^{-3}\times 1.96\times 10^{-3}}{\sqrt{7.85\times 10^{-3}^2-1.96\times 10^{-3}^2}}\sqrt{2\times 9.8\times 11.3}[/tex]
or
[tex]Q=\frac{0.97\times15.42\times 10^{-6}\times 14.88}{7.605\times 10^{-3}}[/tex]
or
Q = 29.28 ×10⁻³ m³/s
Hence, the rate of flow = 29.28 ×10⁻³ m³/s or 0.029 m³/s