Respuesta :

Answer:

The given expression is divisible by 3 for all natural values of x.

Step-by-step explanation:

The given expression is

[tex]2^{2x+1}+1[/tex]

For x=1,

[tex]2^{2(1)+1}+1=2^{3}+18+1=9[/tex]

9 is divisible by 3. So, the given statement is true for x=1.

Assumed that the given statement is true for n=k.

[tex]2^{2k+1}+1[/tex]

This expression is divisible by 3. So,

[tex]2^{2k+1}+1=3n[/tex]              .... (1)

For x=k+1

[tex]2^{2(k+1)+1}+1[/tex]

[tex]2^{2k+2+1}+1[/tex]

[tex]2^{(2k+1)+2}+1[/tex]

[tex]2^{2k+1}2^2+1[/tex]

Using equation (1), we get

[tex](3n-1)2^2+1[/tex]

[tex](3n)2^2-2^2+1[/tex]

[tex](3n)2^2-4+1[/tex]

[tex](3n)4-3[/tex]

[tex]3(4n-1)[/tex]

This expression is also divisible by 3.

Therefore the given expression is divisible by 3 for all natural values of x.