Respuesta :

Answer:

Joule-Thomson coefficient for an ideal gas:

[tex]\mu_{J.T} = 0[/tex]

Explanation:

Joule-Thomson coefficient can be defined as change of temperature with respect to pressure at constant enthalpy.

Thus,

[tex]\mu_{J.T} = \left [\frac{\partial T}{\partial P} \right ]_H[/tex]

Also,

[tex]H= H (T,P)[/tex]

[tex]Differentiating\ it,[/tex]

[tex]dH= \left [\frac{\partial H}{\partial T}\right ]_P dT + \left [\frac{\partial H}{\partial P}\right ]_T dT[/tex]

Also, [tex] C_p[/tex] is defined  as:

[tex]C_p = \left [\frac{\partial H}{\partial T}\right ]_P[/tex]

[tex]So,[/tex]

[tex]dH= C_p dT + \left [\frac{\partial H}{\partial P}\right ]_T dT[/tex]

Acoording to defination, the ethalpy is constant which means [tex]dH = 0[/tex]

[tex]So,[/tex]

[tex]\left [\frac{\partial H}{\partial P}\right ]_T = -C_p\times \left [\frac{\partial T}{\partial P}\right ]_H[/tex]

[tex]Also,[/tex]

[tex]\mu_{J.T} = \left [\frac{\partial T}{\partial P}\right ]_H[/tex]

[tex]So,[/tex]

[tex]\left [\frac{\partial H}{\partial P}\right ]_T =-\mu_{J.T}\times C_p[/tex]

For an ideal gas,

[tex]\left [\frac{\partial H}{\partial P}\right ]_T = 0[/tex]

So,

[tex]0 =-\mu_{J.T}\times C_p[/tex]

Thus, [tex]C_p[/tex] ≠0. So,

[tex] \mu_{J.T} = 0[/tex]