Answer:
The average total energy density of this electromagnetic wave is [tex]72.5\ \mu\ J/m^3[/tex].
Explanation:
Given that,
Magnetic field [tex]B = 13.5\mu T[/tex]
We need to calculate the average total energy density
Using formula of energy density
[tex]Energy\ density =\dfrac{S}{c}[/tex]....(I)
Where, S = intensity
c = speed of light
We know that,
The intensity is given by
[tex]S = \dfrac{B^2c}{2\mu_{0}}[/tex]
Put the value of S in equation (I)
[tex]Energy\ density =\dfrac{\dfrac{B^2c}{2\mu_{0}}}{c}[/tex]
[tex]Energy\ density = \dfrac{(13.5\times10^{-6})^2}{2\times4\pi\times10^{-7}}[/tex]
[tex]Energy\ density = 0.0000725\ J/m^3[/tex]
[tex]Energy\ density = 72.5\times10^{-6}\ J/m^3[/tex]
[tex]Energy\ density = 72.5\ \mu\ J/m^3[/tex]
Hence, The average total energy density of this electromagnetic wave is [tex]72.5\ \mu\ J/m^3[/tex].