The mean time between collisions for electrons in room temperature copper is 2.5 x 10-14 s. What is the electron current in a 2 mm diameter copper wire where the internal electric field strength is 0.01 V/m?

Respuesta :

Answer:

1.87 A

Explanation:

τ = mean time between collisions for electrons = 2.5 x 10⁻¹⁴ s

d = diameter of copper wire = 2 mm = 2 x 10⁻³ m

Area of cross-section of copper wire is given as

A = (0.25) πd²

A = (0.25) (3.14) (2 x 10⁻³)²

A = 3.14 x 10⁻⁶ m²

E = magnitude of electric field = 0.01 V/m

e = magnitude of charge on electron = 1.6 x 10⁻¹⁹ C

m = mass of electron = 9.1 x 10⁻³¹ kg

n = number density of free electrons in copper = 8.47 x 10²² cm⁻³ = 8.47 x 10²⁸ m⁻³

[tex]i[/tex] = magnitude of current

magnitude of current is given as

[tex]i = \frac{Ane^{2}\tau E}{m}[/tex]

[tex]i = \frac{(3.14\times 10^{-6})(8.47\times 10^{28})(1.6\times 10^{-19})^{2}(2.5\times 10^{-14}) (0.01)}{(9.1\times 10^{-31})}[/tex]

[tex]i[/tex]  = 1.87 A