Answer:
1.87 A
Explanation:
τ = mean time between collisions for electrons = 2.5 x 10⁻¹⁴ s
d = diameter of copper wire = 2 mm = 2 x 10⁻³ m
Area of cross-section of copper wire is given as
A = (0.25) πd²
A = (0.25) (3.14) (2 x 10⁻³)²
A = 3.14 x 10⁻⁶ m²
E = magnitude of electric field = 0.01 V/m
e = magnitude of charge on electron = 1.6 x 10⁻¹⁹ C
m = mass of electron = 9.1 x 10⁻³¹ kg
n = number density of free electrons in copper = 8.47 x 10²² cm⁻³ = 8.47 x 10²⁸ m⁻³
[tex]i[/tex] = magnitude of current
magnitude of current is given as
[tex]i = \frac{Ane^{2}\tau E}{m}[/tex]
[tex]i = \frac{(3.14\times 10^{-6})(8.47\times 10^{28})(1.6\times 10^{-19})^{2}(2.5\times 10^{-14}) (0.01)}{(9.1\times 10^{-31})}[/tex]
[tex]i[/tex] = 1.87 A