Answer:
The magnitude of the angular momentum of the cylinder and the rotational kinetic energy of the cylinder are 0.0205 Kgm²/s and 0.01317 J
Explanation:
Given that,
Moment of inertia = 0.016 kg m²
Radius = 6.0
Linear speed = 7.7 m/s
We need to calculate the angular momentum
Using formula of angular momentum
[tex]L=I\omega[/tex]
Where, L = angular momentum
I = moment of inertia
[tex]\omega[/tex] =angular velocity
Put the value into the formula
[tex]L=0.016\times\dfrac{7.7}{6.0}[/tex]
[tex]L=0.0205\ Kg m^2/s[/tex]
We need to calculate the rotational kinetic energy of the cylinder
Using formula of Rotational kinetic energy
[tex]K.E=\dfrac{1}{2}\times I\omega^2[/tex]
[tex]K.E= \dfrac{1}{2}\times I\times(\dfrac{v}{r})^2[/tex]
[tex]K.E= \dfrac{1}{2}\times0.016\times(\dfrac{7.7}{6.0})^2[/tex]
[tex]K.E=0.01317\ J[/tex]
Hence, The magnitude of the angular momentum of the cylinder and the rotational kinetic energy of the cylinder are 0.0205 Kg m²/s and 0.01317 J