Respuesta :
For this case we must simplify the following expression:
[tex]-3 (x + 3) ^ 2-3 + 3x[/tex]
We solve the parenthesis:
[tex]-3 (x ^ 2 + 2 (x) (3) + 3 ^ 2) -3 + 3x =\\-3 (x ^ 2 + 6x + 9) -3 + 3x =[/tex]
We apply distributive property to the terms within parentheses:
[tex]-3x ^ 2-18x-27-3 + 3x =[/tex]
We add similar terms:
[tex]-3x ^ 2-18x + 3x-27-3 =\\-3x ^ 2-15x-30[/tex]
Answer:
[tex]-3x ^ 2-15x-30[/tex]
Answer: [tex]-3x^2-15x-30[/tex]
Step-by-step explanation:
We need to remember that [tex](a\±b)^2=a^2\±2ab+b^2[/tex]
Knowing this, we can simplify the expression:
[tex]-3(x + 3)^2 - 3 + 3x=-3[x^2+2(x)(3)+3^2]-3+3x=-3[x^2+6x+9]-3+3x[/tex]
Apply Distributive property:
[tex]=-3x^2-18x-27-3+3x[/tex]
Add like like terms:
[tex]=-3x^2-15x-30[/tex]
Since it has the form [tex]ax^2+bx+c[/tex], it is already expressed in Standad form.