Answer:
Laplace transformation of [tex]L(t^\frac{3}{2}-e^{-10t})[/tex]=[tex]\frac{3\sqrt{\pi} }{4 s^\frac{5}{2} }\ -\frac{1}{s+10}[/tex]
Step-by-step explanation:
Laplace transformation of [tex]L(t^\frac{3}{2}-e^{-10t} )[/tex]
[tex]L(t^\frac{3}{2})=\int_{0 }^{\infty}t^\frac{3}{2}e^{-st}dt\\substitute \ u =st\\L(t^\frac{3}{2})=\int_{0 }^{\infty}\frac{u}{s} ^\frac{3}{2}e^{-u}\frac{du}{s}=\frac{1}{s^{\frac{5}{2}}}\int_{0 }^{\infty}{u} ^\frac{3}{2}e^{-u}{du}[/tex]
the integral is now in gamma function form
[tex]\frac{1}{s^{\frac{5}{2}}}\int_{0 }^{\infty}{u} ^\frac{3}{2}e^{-u}{du}=\frac{1}{s^{\frac{5}{2}}}\Gamma(\frac{5}{2})=\frac{1}{s^{\frac{5}{2}}}\times\frac{3}{2}\times\frac{1}{2} }\Gamma (\frac{1}{2} )=\frac{3\sqrt{\pi} }{4 s^\frac{5}{2} }[/tex]
now laplace of [tex]L(e^{-10t})[/tex]
[tex]L(e^{-10t})=\frac{1}{s+10}[/tex]
hence
Laplace transformation of [tex]L(t^\frac{3}{2}-e^{-10t})[/tex]=[tex]\frac{3\sqrt{\pi} }{4 s^\frac{5}{2} }\ -\frac{1}{s+10}[/tex]